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1. Introduction

Supersymmetric extensions of the standard model (SM) are promising candidates for the

physics around a TeV scale. The supersymmetry (SUSY) can protect the electroweak

scale MEW ∼ 102 GeV against radiative corrections of the order of the Planck scale

MP l ∼ 1019 GeV, even with soft SUSY breaking if the scale of soft SUSY breaking terms

are of O(MEW ). That means, the unification of the gravity and the SM would be possible

within such framework without violating the mass scale of the SM. Moreover, the mini-

mal supersymmetric standard model (MSSM) suggests that the three gauge couplings in

the SM are unified at the grand unification theory (GUT) scale, MGUT ∼ 1016 GeV. The

lightest SUSY particle (LSP) can be a candidate for the cold dark matter, if anything like

R-parity forbids LSP decays.

Because any SUSY particles have not been observed yet, the SUSY must be broken

above the electroweak scale. The SUSY breaking generically introduces flavor violating

masses, mixing and couplings (soft SUSY breaking terms), which are severely restricted

by the flavor changing neutral current experiments. If the SUSY breaking effects are

dominantly mediated from the SUSY breaking (hidden) sector to the visible (MSSM) sector

by gauge interactions which are flavor blind, SUSY flavor violations can be suppressed.

However, if the dominant SUSY breaking effects are mediated by gravitational interactions

which are generically flavor dependent, there must exist certain mechanism to suppress

flavor violations in the visible sector, which is sometimes called sequestering. The ultimate
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situation for the sequestering is the case that the hidden sector is completely separated

from the visible sector by the spatiality of extra dimensions [1]. In this case, the soft SUSY

breaking terms in the visible sector are generated through the superconformal anomaly [1,

2]. However, due to the ultra-violet (UV) insensitive nature of anomaly mediation, the

low energy behavior of MSSM soft terms is completely determined, resulting in tachyonic

slepton masses.

On the other hand, if we consider superstring theory and its effective supergravity

theory as a UV completion of the MSSM (or any SUSY SM), there generically exist mod-

uli superfields in the four-dimensional (4D) effective theory. Vacuum expectation values

(VEVs) of moduli correspond to sizes and shapes of extra dimensions and determine quan-

tities in the 4D effective theory such as MP l, gauge and Yukawa couplings. Naively, the

moduli are flat directions of the potential, but must be stabilized by some nontrivial effects

such as fluxes and/or nonperturbative effects. The moduli stabilization is also relevant

to soft SUSY breaking terms because moduli multiplets generically couple to the visible

sector in the effective theory, and the auxiliary components of the moduli multiplets are

also determined by the potential stabilizing the moduli themselves in supergravity.

It has been recognized that the realization of a SUSY breaking vacuum with an (al-

most) vanishing vacuum energy, which is required by the observations, is quite difficult

in the conventional moduli stabilization schemes in supergravity theory. This is mainly

because the moduli potential in the effective supergravity theory, in general, prefers SUSY

preserving anti-de Sitter (AdS) vacua with a negative vacuum energy. Recently, a sys-

tematic way for realizing a SUSY breaking Minkowski minimum in a controllable manner

was proposed, which we call the Kachru-Kallosh-Linde-Trivedi (KKLT) scenario [3]. In

this scenario, we uplift the above mentioned SUSY AdS vacuum to a Minkowski minimum

by a SUSY breaking vacuum energy generated in the so-called uplifting sector, which is

assumed to be well sequestered from the light moduli as well as the visible sector. In the

original KKLT scenario, the uplifting sector is formed by an anti D3-brane located at the

tip of the warped throat in extra dimensions.

Because of the geometrical structure, the SUSY breaking anti-brane can be sequestered

from the light moduli and the visible sector (on D7 branes). Soft SUSY breaking terms

are calculated [4, 5] in the KKLT model. It was found that the tree level (light) modulus

mediation is generically comparable to the anomaly mediation, resulting in the so-called

mirage mediation [6] and leading to phenomenologically interesting aspects [7, 8]. Then,

this model could be restricted from the viewpoint of flavor violation, if the light-modulus

couplings to the visible sector are flavor dependent. The flavor dependence of the modulus

couplings might be determined by the mechanism of generating Yukawa hierarchies for

quarks and leptons. However, it is still a challenging issue to realize successful Yukawa

structures within superstring models.

The anti-brane breaks SUSY explicitly in the effective supergravity theory. We can

modify the KKLT scenario such that the uplifting energy is supplied by nonvanishing F-

terms [9 – 12] and/or D-terms [13, 14] in the dynamical SUSY breaking (hidden) sector1

1Note that we call the dominant SUSY breaking sector as the hidden sector, but the moduli sector is
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such as the O’Raifeartaigh model [15] and the Intriligator-Seiberg-Shih (ISS) model [16].2

The former is called as the F-term uplifting, which can realize a low energy SUSY models

more easily than the latter. In this scenario, the soft terms are generically model dependent

(see, e.g., ref. [17] and references therein), due to the possible direct couplings between the

hidden and the visible sectors. If contact terms between the visible and hidden sectors are

not suppressed, soft SUSY breaking scalar masses in the visible sector would be of O(m3/2).

On the other hand, scalar masses would be suppressed in the case that the hidden sector is

somehow sequestered from the visible sector. At any rate, these scalar masses depend on

explicit forms of couplings between the hidden and visible sectors. Thus, it is important

to clarify explicitly couplings between the visible and hidden sectors in a certain class of

models and to study the moduli stabilization, the F-term uplifting scenario and soft SUSY

breaking terms.

It would be difficult to study the above aspects explicitly in effective supergravity

theories of superstring models on six extra dimensions with generic geometrical structure,

although our naive motivation is originated from superstring theory. Obviously, a single ex-

tra dimensional model is the simplest in extra dimensional models, but it has a sufficiently

rich structure, which would be useful to understand the above aspects in string-derived

supergravity theories. Thus, in this paper we study five-dimensional (5D) supergravity on

the orbifold S1/Z2 with a weakly warped factor. Indeed, the modulus stabilization and

the uplifting of the vacuum energy in the 5D orbifold model have been studied in ref. [18].

Its setup is that the visible sector and the hidden sector are localized on different orbifold

fixed points. That is, the SUSY breaking source and the uplifting sector are sequestered

geometrically from the visible sector, and at the tree level, the sequestering in this setup

is complete as it may be rather obvious from the geometrical viewpoint. In this paper, we

study another setup that all modes are bulk fields. We also introduce kink-type masses for

bulk modes in order to consider non-trivial wavefunction profiles of zero modes along the

fifth dimension [19]. As a solution of the equation of motion, the zero mode wavefunction is

quasi-localized exponentially at one of orbifold fixed points.3 This setup includes the setup

of ref. [18] as the limit that the hidden sector and the visible matter fields are localized

sharply at different fixed points.4 Similarly, as a certain limit our setup includes the setup

that one of the visible and hidden sectors is localized at a orbifold fixed point and the other

is originated from bulk modes. Because both the visible sector and the hidden sector are

bulk modes in our setup, couplings between the hidden and visible sectors are constrained

by the bulk SUSY and can be calculated up to brane-induced couplings. We clarify these

couplings and study the moduli stabilization, the SUSY breaking and the F-term uplifting

in our 5D supergravity model.

The following sections are organized as follows. In section 2, we construct our 5D su-

not included in the hidden sector in our terminology.
2These models have the same behavior when heavy modes are integrated out.
3Such a wavefunction localization mechanism is useful to realize realistic Yukawa matrices for quarks

and leptons. See, e.g., refs. [20, 21] and references therein.
4For the visible gauge sector, the brane-induced gauge kinetic function must be quite large compared

with the bulk gauge kinetic function to realize the setup of ref. [18] from our model.
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pergravity model. We also derive the 4D effective Lagrangian for our model. In section 3,

we compute the Kähler potential and the superpotential for the radius modulus T and

the hidden sector field X, which are relevant to the dynamical SUSY breaking and the

uplifting. We also show the resulting soft SUSY breaking terms in terms of the auxiliary

components F T and FX . Then, we discuss about the nature of SUSY breaking, F-term

uplifting and sequestering in our model based on them. We summarize this paper in sec-

tion 4. In appendix A, the basic structure of F-term uplifting is briefly reviewed as well as

the original KKLT model.

2. Quasi-localized visible and hidden sectors

2.1 5D model

We consider a 5D supergravity compactified on an orbifold as an illustrating example of

dynamical sequestering, SUSY breaking and F-term uplifting. For such a purpose, we start

from the 5D off-shell (conformal) supergravity on an orbifold S1/Z2 [22] with the radius R.

For simplicity and concreteness, we choose the simplest bulk supergravity characterized by

a single Z2-odd vector multiplet (graviphoton) and a single compensator hypermultiplet in

addition to matter multiplets. Because of that, we have a single (radius) modulus T in the

4D effective theory, whose VEV is related to the orbifold radius as 〈T 〉 = πR, and the target

manifold of the hypermultiplet is characterized by USp(2, 2nH)/USp(2)×USp(2nH ), where

nH is the number of the matter hypermultiplets. The extensions to the case with more odd

vector multiplets (i.e., more moduli) and/or with more compensators are straightforward.5

As for matter multiplets, we embed visible sector (MSSM) chiral multiplets QI into

5D hypermultiplets HI = (QI ,QI
c), where QI is the zero-mode of QI , and the index I runs

over all the quarks, leptons and Higgs fields. The hidden sector chiral multiplet X, which

is responsible for the dynamical SUSY breaking and for the uplifting, is also assigned to

a 5D hypermultiplet HX = (X ,Xc) where X is the zero-mode of X . Zero modes of chiral

multiplet partners QI
c and Xc in these hypermultiplets are projected out by orbifolding.

We gauge U(1) isometries of the compensator, visible (MSSM) and hidden hypermulti-

plets by the graviphoton with corresponding charges k, cI and cX , respectively [19, 23, 24].

Because the graviphoton has an odd Z2-parity under the orbifold projection, the gauge

coupling should change its sign across the orbifold fixed points located at y = 0, πR. This

can be achieved by accompanying a periodic sign function ǫ(y) with the gauge coupling.6

Then, these gauging procedures generate kink-type masses ǫ(y)k̂, ǫ(y)ĉI and ǫ(y)ĉX for the

gravitino, visible and hidden hyperinos, respectively, as well as a bulk negative cosmolog-

ical constant scaled by k̂, where k̂ = kM , ĉI = cIM , ĉX = cXM and M is the VEV of

graviscalar (a scalar component of graviphoton multiplet). Thus, the equations of motion

in the orbifold segment generate exponential profiles e−k̂y, e−ĉIy and e−ĉXy for the wave-

5For example, the power 2/3 of the integrand in eq. (2.1) is different in the case with two compensators,

from the viewpoint of the 4D effective theory.
6In supergravity, this can be achieved by the so-called four-form mechanism [25, 24].
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functions [19] of the gravitino, visible and hidden hyperinos, respectively, in the orbifold

slice of AdS5 warped background geometry7 ds2 = e−2k̂ydx2 − dy2.

The bulk supergravity has an N = 2 SUSY (eight supercharges), and does not allow

Yukawa interactions between hypermultiplets. To be phenomenologically viable, we in-

troduce superpotential terms at the fixed point including the Yukawa interaction between

quarks/leptons and the Higgs bosons. In addition, some superpotential terms for the hid-

den sector field X are necessary for triggering a dynamical SUSY breaking, generating a

nonvanishing value of FX , which would uplift the negative vacuum energy of the modulus

sector. Actually, the fixed points respect only N = 1 SUSY (four supercharges) which

survives under the orbifolding, where we can write any Kähler/superpotential terms and

gauge kinetic functions if the other symmetries such as MSSM gauge symmetries do not

forbid them.

2.2 4D effective theory

To study the nature of SUSY breaking, uplifting and sequestering, a 4D effective theory

of our 5D model is desired. Especially, the information of contact interactions between

QI and X in the Kähler potential is important in such 4D effective theory. For this end,

we adopt the off-shell dimensional reduction method proposed by refs. [26, 27], which is

based on an N = 1 superspace description of 5D conformal supergravity on an orbifold [28]

and developed in subsequent works [29]. This method provides us a way for deriving the

4D off-shell effective action directly from the 5D off-shell supergravity action with generic

boundary terms, respecting the N = 1 off-shell structure. The procedure is as follows. We

start from the N = 1 off-shell description of 5D action. After some gauge transformation,

we drop kinetic terms for Z2-odd multiplets which are negligible at low energy. Then,

these multiplets play a role of Lagrange multiplier and their equations of motion extract

zero-modes from the Z2-even multiplets.

After these steps, we find the 4D effective Lagrangian of our 5D model in the N = 1

superspace description,

L =

∫

d4θ |C|2Ω +

{
∫

d2θ
(

faW
aαW a

α + C3W
)

+ h.c.

}

,

where C is the compensator chiral multiplet in the 4D N = 1 supergravity. The Kähler

potential K = −3 ln(−Ω/3), the superpotential W and the gauge kinetic function fa are

given by

Ω = Ω(bulk) +
∑

ϑ=0,π

e−
ϑ
π

k(T+T̄ )Ω(ϑ) = −3e−K/3,

W =
∑

ϑ=0,π

e−3ϑ
π

kTW (ϑ) + W (np),

fa = f (bulk)
a +

∑

ϑ=0,π

f (ϑ)
a ,

7The boundary tension terms which balance with the bulk cosmological constant is automatically sup-

plied [24] by the four-form mechanism mentioned in the previous footnote.
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and contributions from the bulk are found as

Ω(bulk) = −3

∫ Re T

0
dt e−2kt

(

1 − e−2(cX−
3
2
k)t|X|2 −

∑

I

e−2(cI−
3
2
k)t|QI |2

)
2
3

, (2.1)

f (bulk)
a = kaT.

The Yang-Mills gauge couplings to the hypermultiplets in Ω(bulk) are omitted to simplify the

expression, which are irrelevant to the following arguments. The nonperturbative effects

such as gaugino condensations are encoded in the superpotential terms

W (np) =

mnp
∑

m=1

Bme−bm −
nnp
∑

n=1

Ane−anT ,

where the first constant and the second T -dependent term would come from the mnp

boundary and the nnp bulk (zero-mode) gaugino condensations, respectively. Thus the

natural orders of the constants are

bm ∼ an = O(4π2), Bm ∼ An = O(1).

The other quantities

Ω(ϑ) = Ω(ϑ)(Xϑ, X̄ϑ, QI
ϑ, Q̄I

ϑ), W (ϑ) = W (ϑ)(Xϑ, QI
ϑ), f (ϑ)

a = f (ϑ)
a (Xϑ),

originate from the Kähler potential, the superpotential and the gauge kinetic function,

respectively, induced at the 4D fixed point y = ϑR (ϑ = 0, π). Within the framework of 5D

orbifold supergravity, these can be arbitrary functions of the chiral multiplets Xϑ and/or

QI
ϑ originating from the bulk hypermultiplets (as well as the boundary own fields which

are treated implicitly here and hereafter, if they are needed),

Xϑ = e−
ϑ
π (cX−

3
2
k)T X, QI

ϑ = e−
ϑ
π (cI−

3
2
k)T QI ,

for ϑ = 0 and ϑ = π, respectively. In order for the orbifold supergravity theory to be self

consistent, we consider that all the boundary terms can be treated perturbatively, i.e., the

constants in Ω(ϑ), W (ϑ) and f
(ϑ)
a are assumed implicitly to be small compared with those

originating from the bulk in this paper.

We consider the 4D effective theory around QI = X = 0, and then expand Ω in powers

of QI and X as

Ω = Ω̂0(T, T̄ ) + YXX̄(T, T̄ )|X|2 + YIJ̄(T, T̄ ,X, X̄)QIQ̄J̄ + O(Q4,X4),

where

Ω̂0(T, T̄ ) = −3α
1 − β|e−kT |2

2k
, YXX̄(T, T̄ ) = αX

1 − βX |e−(cX−k/2)T |2
cX − k/2

,

YIĪ(T, T̄ ,X, X̄) = αI
1 − βI |e−(cI−k/2)T |2

cI − k/2
+

1

3
α̃I

1 − β̃I |e−(cI+cX−2k)T |2
cI + cX − 2k

|X|2, (2.2)
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and the coefficients are determined as

α = 1 − 2

3
kΩ(0)|0, αβ = 1 +

2

3
kΩ(π)|0,

αX = 1 +

(

cX − k

2

)

Ω
(0)

XX̄
|0, αXβX = 1 −

(

cX − k

2

)

Ω
(π)

XX̄
|0,

αI = 1 +

(

cI −
k

2

)

Ω
(0)

IĪ
|0, αIβI = 1 −

(

cI −
k

2

)

Ω
(π)

IĪ
|0,

α̃I = 1 + 3(cI + cX − 2k)Ω
(0)

IĪXX̄
|0, α̃I β̃I = 1 − 3(cI + cX − 2k)Ω

(π)

IĪXX̄
|0.

Here and hereafter, we use the notation that FAB··· = ∂A∂B · · ·F and FAB···|0 =

FAB···|QI=Q̄Ī=X=X̄=0 for a function F = F (X, X̄,QI , Q̄Ī) and indices A,B, . . . =

(X, X̄, I, Ī). In this paper, we assume that the boundary Kähler potential does not contain

flavor mixing, i.e., Ω
(ϑ)

IJ̄
|QI=Q̄Ī=0 = 0 for J 6= I, for simplicity.8 Note that there is no flavor

mixing in the bulk Kähler potential. Then we obtain

YIJ̄(T, T̄ ,X, X̄) = 0 (J 6= I). (2.3)

Moreover, when Ω(0),(π) and their derivatives are sufficiently small, we have

α = αX = αI = α̃I = β = βX = βI = β̃I = 1.

The Kähler potential is calculated from Ω as

K = −3 ln (−Ω/3) = K̂(T, T̄ ,X, X̄) + O(Q2),

where

K̂(T, T̄ ,X, X̄) = K̂0(T, T̄ ) + ZXX̄(T, T̄ )|X|2 + O(|X|4), (2.4)

and

K̂0(T, T̄ ) = −3 ln
(

−Ω̂0(T, T̄ )/3
)

,

ZXX̄(T, T̄ ) = −3YXX̄(T, T̄ )/Ω̂0(T, T̄ ).

Similarly, we also expand the superpotential W and the gauge kinetic function fa as

W = Ŵ (T,X) +
1

6
λIJK(T,X)QIQJQK + O(Q4),

fa = f (0)
a |0 + f (π)

a |0 + kaT +
(

f
(0)
a,X |0 + f

(π)
a,X |0 e−(cX−3k/2)T

)

X + O(X2), (2.5)

where

Ŵ (T,X) = c −
nnp
∑

n=0

Ane−anT +
(

W
(0)
X |0 + W

(π)
X |0 e−(cX+3k/2)T

)

X + O(X2), (2.6)

λIJK(T,X) = W
(0)
IJK |0 + W

(π)
IJK |0 e−(cI+cJ+cK−3k/2)T

+
(

W
(0)
IJK,X |0 + W

(π)
IJK,X |0 e−(cI+cJ+cK+cX−3k)T

)

X + O(X2). (2.7)

8We would study a more general case with Ω
(ϑ)

IJ̄
|
QI=Q̄Ī=0 6= 0 for J 6= I in a separate work [30].
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Note that the constant terms in W (ϑ) are now encoded in the constant c and the zeroth

component of An as

c = W (0)|0 +

mnp
∑

m=1

Bme−bm ,

An = {W (π)|0, A1, A2, . . . , Annp}, an = {3k, a1, a2, . . . , annp},

where n = 0, 1, 2, . . . , nnp.

In the above expressions, we find the Kähler/superpotential terms for the modulus T

and the hidden sector field X, which carry the informations of dynamical SUSY breaking

and the uplifting structures. We can also compute soft supersymmetry breaking terms

from the above expressions, in terms of the F-component of the radius modulus T and

the hidden sector field X. With the resulting soft terms, we can analyze the nature of

sequestering in our 5D model.

3. Hidden sector potential and soft terms

In order to obtain a SUSY breaking Minkowski vacuum with (almost) vanishing vacuum

energy, we consider the scenario of F-term uplifting, which would be realized by the scalar

potential of the modulus and the hidden sector:

VF = K̂ij̄F
iF̄ j̄ − 3|m3/2|2,

where i, j, . . . = (T,X),

F i = −eK̂/2K̂ j̄i(
¯̂
Wj̄ + K̂j̄

¯̂
W ), m3/2 = eK̂/2Ŵ ,

and K̂ij̄K̂
j̄k = δ k

i , K̂ ījK̂jk̄ = δī
k̄
. By substituting K̂(T, T̄ ,X, X̄) and Ŵ (T,X) shown

in eqs. (2.4) and (2.6), respectively, we obtain the modulus and the hidden sector F-term

scalar potential of our model. Note that the above potential is evaluated in the Einstein

frame where |C|2 = eK/3M2
P l, and we measure all the mass scales in the unit MP l = 1

in the following. We also restrict ourselves to the region X ≪ 1 where the expansion in

powers of X is valid.

As for the tree-level soft SUSY breaking terms of the visible fields, in this paper we

focus on9 the gaugino masses Ma, the scalar masses m2
IJ̄

and the A-terms AIJK . These

are defined as

Lsoft = −m2
I |QI |2 − 1

2

(

Maλ
aλa +

1

6
yIJKAIJKQIQJQK + h.c.

)

,

where all the kinetic terms are canonically normalized, and yIJK = Y
−1/2

IĪ
Y

−1/2

JJ̄
Y

−1/2

KK̄
λIJK

is the physical Yukawa coupling. Note that there is no flavor mixing in the soft scalar masses

m2
IJ̄

= δIJm2
I due to eq. (2.3). These soft terms are generated through the mediation by

9The so-called µ-term and B-term would be discussed in a separate work [30].
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the radius modulus T as well as the direct couplings to the SUSY breaking field X. Such

effects are summarized in the following general formula [31, 5]:

Ma = F i∂i ln(Re fa),

m2
I = −F iF̄ j̄∂i∂j̄ ln YIĪ ,

AIJK = F i∂i ln
(

Y −1
IĪ

Y −1
JJ̄

Y −1
KK̄

λIJK

)

,

where i, j, . . . = (T,X). Here we assume that the total vacuum energy is vanishing at

the minimum where the soft terms are evaluated, which would be realized by the F-term

uplifting.

Substituting fa, YIĪ and λIJK shown in eqs. (2.5), (2.2) and (2.7), respectively, we find

the expressions for the above soft terms as

Ma =
F T + (2/ka)(f

(0)
a,X + f

(π)
a,Xe−(cX−3k/2)T )FX

T + T̄ + (2/ka)(f
(0)
a + f

(π)
a )

+ O(X),

m2
I = βI(cI − k/2)2

|e(cI−k/2)T |2
(|e(cI−k/2)T |2 − βI)2

|F T |2

− α̃I

3αI

cI − k/2

cI + cX − 2k

|e(cI−k/2)T |2 − β̃I |e−(cX−3k/2)T |2
|e(cI−k/2)T |2 − βI

|FX |2 + O(X),

AIJK = −
{

(

βI(cI − k/2)

|e(cI−k/2)T |2 − βI
+ (I ↔ J) + (I ↔ K)

)

+
cI + cJ + cK − 3k/2

W
(0)
IJK e(cI+cJ+cK−3k/2)T + W

(π)
IJK

}

F T

+
W

(0)
IJK,X + W

(π)
IJK,X e−(cI+cJ+cK+cX−3k)T

W
(0)
IJK + W

(π)
IJK e−(cI+cJ+cK−3k/2)T

FX + O(X), (3.1)

where we omit the symbol |0. In our 5D model, the visible sector fields QI and the hidden

sector field X are quasi-localized with the wavefunctions e−ĉIy and e−ĉXy, respectively,

whose effects are encoded in the above expressions as exponential factors. In order to

suppress the contributions from the direct coupling, i.e., FX in the soft terms, it is favored

that QI and X are localized away from each other.

Taking into account the warp factor e−k̂y of the background geometry, we have basically

two choices of kink mass parameters for such sequestering of the hidden sector,
{

(i) cI − k
2 ≡ −c̃I < 0 (∀I), cX − k

2 ≡ c̃X > 0,

(ii) cI − k
2 ≡ c̃I > 0 (∀I), cX − k

2 ≡ −c̃X < 0.
(3.2)

Without loss of generality, we can assume that

k > 0.

The opposite case k < 0 is achieved by exchanging the quantities originating from two

fixed points y = 0 and y = πR each other.
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3.1 UV uplifting

First we consider the case (i) defined in eq. (3.2). In this case, the hidden sector field X is

localized toward the y = 0 (UV) fixed point. The hidden-sector Kähler potential (2.4) and

the superpotential (2.6) are determined by

K̂0(T, T̄ ) = −3 ln

(

α
1 − β|ǫk(T )|2

2k

)

, ZXX̄(T, T̄ ) =
2kαX

αc̃X

1 − βX |ǫX(T )|2
1 − β|ǫk(T )|2 ,

Ŵ (T,X) = c −
nnp
∑

n=0

Ane−anT +
{

W
(0)
X |0 + W

(π)
X |0ǫ2

k(T )ǫX(T )
}

X + O(X2).

Here and hereafter we use epsilon parameters

ǫI(T ) = e−c̃IT , ǫX(T ) = e−c̃XT , ǫk(T ) = e−kT ,

whose vacuum values can be exponentially suppressed. Especially, ǫk(πR) determines the

scale at the infra-red (IR) boundary y = πR and also the Kaluza-Klein (KK) resonance

scale MKK = O(ǫk(πR)k). We compare the above Kähler potential and the superpoten-

tial10 with those of the ISS-KKLT model (A.10) or the ISS-racetrack model (A.19) reviewed

as basic models of F-term uplifting in appendix A. In the following, we assume an (ap-

proximate) R-symmetry in the hidden sector by assigning the R-charge 2 for X. Then the

quadratic and higher powers of X in the hidden sector superpotential are forbidden (or

suppressed11). This is a requirement for a dynamical SUSY breaking [33].

For example, for

A0 = W (0)|0 = 0, nnp = 1, W
(π)
X |0 = 0,

the above superpotential is in the same form as the ISS-KKLT model (A.10), with the

identification

A1 = A, a1 = a, W
(0)
X |0 = µ2.

Only the difference is that the above modulus Kähler potential K̂0(T, T̄ ) carries ǫk(T ) due

to the warped background geometry. In the limit k → 0, this is reduced to K̂0(T, T̄ ) =

−3 ln(T + T̄ ) + O(Ω(0)|0,Ω(π)|0), that is, to the effective modulus Kähler potential of the

KKLT model (A.10) with some corrections from boundary constants. However, even with

a finite value of k, as long as the following relation,

1 − a(∂T K̂0)
−1|T=T0 = 1 − (3k)−1a(1 − |ǫk(T0)|−2) ≪ A1c

−1,

10We implicitly assume some heavy modes living at the fixed points in our model, which generate a

SUSY breaking mass mX for X at the one-loop level as in the ISS-KKLT or ISS-racetrack model shown in

eq. (A.11) in appendix A.
11If there exist such R-symmetry breaking terms with higher powers of X, SUSY vacua would exist in our

model. However, such SUSY points are far away from the SUSY breaking local minimum if the coefficients

of the R-breaking terms are suppressed [32].
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is satisfied (see eq. (A.3)) and also the T -X mixing is small as in eq. (A.12), the reference

point,

T0 ≃ a−1 ln(Ac−1), X0 = O((µ/mX)2c),

satisfying ŴT + K̂T Ŵ = 0, VX = 0 (ŴX + K̂XŴ 6= 0), almost represents the SUSY

breaking minimum (see eqs. (A.13) and (A.14)) up to certain small deviations δT and δX

as in the ISS-KKLT model shown in appendix A. Therefore, if the parameters satisfy a

weak warping condition

c ≪ |ǫk(T0)|2, i.e., 2kT0 ≪ ln c−1, (3.3)

as well as the low energy SUSY conditions

ln c−1 = O(4π2), µ2 = O(c̃),

(see eqs. (A.2) and (A.15), respectively), we can realize a kind of the ISS-KKLT model

effectively in our 5D framework.

The vacuum energy at the SUSY breaking minimum is vanishing if we tune the corre-

sponding parameters as in eq. (A.16), i.e.,

c̃ ≃ µ2/
√

3ZXX̄ |T=T0 + O(µ2),

where the SUSY AdS vacuum in the modulus T sector alone is uplifted to a SUSY breaking

Minkowski minimum by a dynamically generated F-term in the hidden sector X. With

negligible Kähler mixing K̂XT̄ , K̂XT = O(X) ≪ 1, the modulus mass mT and the SUSY

breaking order parameters F T , FX , FC are expressed (see eq. (A.18)) as

mT ≃ −eK̂/2K̂T T̄ ŴTT |T=T0,X=X0 ,

F T ≃ −
√

3K̂T

K̂T T̄

(

√
3 +

√

K̂XX̄ŴTX

K̂T Ŵ

)

|m3/2|2
mT

∣

∣

∣

∣

∣

T=T0,X=X0

,

FX ≃ −
√

3

K̂XX̄

m3/2

∣

∣

∣

∣

∣

T=T0,X=X0

, FC ≃ Cm3/2

∣

∣

T=T0,X=X0
.

Because we are considering a weak warping (3.3), mT , F T , FC and FX can be also esti-

mated by those in the ISS-KKLT model, (A.5), (A.6) and (A.17), respectively. That is,

the modulus T is heavier than the gravitino by a loop factor, and the tree-level modulus

mediation is comparable to the anomaly mediation,

mT = O(4π2m3/2),
F T

T + T̄
= O(m3/2/4π

2), FX ∼ FC

C
= O(m3/2). (3.4)

On the other hand, for

c = 0, A0 = W (0)|0 = 0, nnp = 2, W
(0)
X |0 = 0,
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the above superpotential has the same form as one in the ISS-racetrack model (A.19), if

we tune the parameters as, e.g., kT0 ≪ c̃XT0 = O(4π2). However, in this case, a heavier

modulus mass can be obtained12 without affecting the size of F T and FC , that is,

mT = O(ǫ−2
k (4π2)2m3/2),

F T

T + T̄
= O(m3/2/4π

2), FX ∼ FC

C
= O(m3/2).

Note that the modulus mass mT is heavier by a factor ǫ−2
k than the one in the ISS-racetrack

model (A.8).

So far, we have confirmed that our 5D model can realize the ISS-KKLT-type moduli

stabilization, SUSY breaking and F-term uplifting, under the assumption of weak warp-

ing (3.3). It might be possible to construct a different class of F-term uplifting model with

a strong warping, e.g., k = O(4π2) and then ǫk = O(c). In this case, we have to be careful

about the fact that the KK scale is quite low and the effects of non-zero modes can be

enhanced at low energy. This case is beyond the scope of this paper, and we would study

it elsewhere. (For the case with k = a/3 = O(4π2), see ref. [35].)

Next, we study the nature of sequestering in the case (i), where QI are localized toward

the y = πR (IR) fixed point. The tree-level soft terms for visible fields are found as

Ma =
F T + k−1

a

(

f
(0)
a,X + ǫ−1

k ǫXf
(π)
a,X

)

FX

T + T̄ + 2k−1
a (f

(0)
a + f

(π)
a )

+ O(X),

m2
I =

βI c̃
2
I

βI − ǫ2
I

(

ǫ2
I

βI − ǫ2
I

|F T |2 − α̃I

3αIβI

ǫ2
I − β̃Iǫ

−2
k ǫ2

X

c̃I(c̃X − c̃I − k)
|FX |2

)

+ O(X),

AIJK = −
{

(

βI c̃I

βI − ǫ2
I

+ (I ↔ J) + (I ↔ K)

)

− (c̃I + c̃J + c̃K)W
(π)
IJK

W
(0)
IJKǫIǫJǫK + W

(π)
IJK

}

F T

+
W

(0)
IJK,XǫIǫJǫK + W

(π)
IJK,Xǫ−1

k ǫX

W
(0)
IJKǫIǫJǫK + W

(π)
IJK

FX + O(X), (3.5)

where we omit the symbol |0.
We assume that the order parameters F T , FC and FX are given by (3.4). For f

(0)
a,X =

O(1), we find Ma = O(m3/2). If we assume that the hidden sector R-symmetry is preserved

also in the visible sector gauge kinetic functions, i.e., f
(0)
a,X = f

(π)
a,X = 0, the FX can not

contribute to the gaugino mass. In this case, the gaugino mass is a mirage-type, where the

tree-level modulus mediation and the anomaly mediation are comparable to each other.

The tree-level contributions to scalar masses m2
I are suppressed compared with the

anomaly mediation if ǫ2
I , ǫ−2

k ǫ2
X ≪ 1/(4π2). In this case, the sequestering is maximal. The

limit c̃I → ∞, that is, ǫI → 0, corresponds to the complete localization of QI at the fixed

point y = πR. Then, QI is a chiral multiplet living only at the fixed point y = πR and

its scalar mass mI has no contribution due to F T . Similarly, the limit c̃X → ∞ makes

12This enhancement of modulus mass would play a role to avoid the so-called moduli-induced grav-

itino/neutralino problem [34] in the KKLT-type scenario. Note that the modulus mass is already enhanced

by a loop factor in the ISS-racetrack model (A.8) compared with the original KKLT model [12].
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X live only at the fixed point y = 0, and the scalar mass mI of QI has no contribution

due to FX . At any rate, the modulus mediation is always subdominant compared with

the direct mediation unless all the epsilon parameters are of O(1). Note that the modulus

mediation and the direct mediation typically give a positive and a negative contribution

to scalar masses squared, respectively.

The contact term between X and QI would be induced by loop effects through the grav-

itational interaction even if X and QI are completely localized at opposite fixed points [36].

Such loop effects would lead to corrections to scalar masses squared ∆m2
I , which are pro-

portional to |FX |2. However, such corrections are suppressed by the one-loop factor and

the warp factor ǫ2
k. (See also ref. [37].)13 Thus, such corrections are negligible compared

with the anomaly mediation in a weakly warped case, e.g. ǫk ∼ MGUT/MP l and even in

the case with ǫk ∼ 1/(4π2).

For ǫ2
I (∀I), ǫIǫJǫK , ǫ−1

k ǫX ≪ 1/(4π2), the tree-level contributions to the A-term

are suppressed compared with the anomaly mediation if W
(π)
IJK|0 6= 0, and the maximal

sequestering is achieved. However, if W
(π)
IJK |0 = 0, the A-term becomes AIJK ≃ −(c̃I +

c̃J + c̃K)F T [20, 21] which can be a mirage-type for c̃I , c̃J , c̃K = O(1).

3.2 IR uplifting

Next we consider the case (ii) defined in eq. (3.2). In this case, the hidden sector field X

is localized toward the y = πR (IR) fixed point. For k = 0, i.e., a flat extra dimension,

the case (ii) is physically equivalent to the case (i) under the exchange of two fixed points.

The difference between the case (i) and the case (ii) is enhanced for large k. Thus, we only

consider such a case,

ǫk . ǫX , ǫI , (i.e. k & c̃X , c̃I), (3.6)

for ∀I in the following. In this case, the hidden sector (and the modulus) Kähler and the

superpotential are obtained as

K̂(T, T̄ , X̃, ¯̃X) = −3 ln

(

α
1 − β|ǫk(T )|2

2k

)

+
2kαX

αc̃X

βX − |ǫX(T )|2
1 − β|ǫk(T )|2 |X̃ |2 + O(|X̃ |4),

Ŵ (T, X̃) = c −
nnp
∑

n=0

Ane−anT +
{

W
(0)
X |0ǫX(T ) + W

(π)
X |0ǫ2

k(T )
}

X̃ + O(X̃2),

where we redefined X as

X̃ = ǫ−1
X (T )X.

The superpotential can be the ISS-KKLT type (A.10) or the ISS-racetrack type (A.19),

for the case of W
(0)
X |0 = 0 or W

(π)
X |0 = 0 with the identification ǫX(T )W

(0)
X |0 = µ2(T ) or

ǫ2
k(T )W

(π)
X |0 = µ2(T ), respectively, where a sizable T -X mixing exists for k & c̃X & 4π2.

As shown previously, the effect of warping in the Kähler potential is not relevant to the

13Other sources of contact terms would be bulk vector multiplets [38, 14], which are (assumed to be)

absent in our 5D model.
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analysis in appendix A, only when a weak warping condition (3.3) is satisfied, and this

restricts ǫX and ǫI as c ≪ ǫX , ǫI due to eq. (3.6). Then the condition corresponding to

eq. (A.15) can not be satisfied, that is, the analysis in appendix A is not valid in this case,

and the structure of F-term uplifting can be different from the conventional one due to

eq. (3.6). We would study also this case elsewhere as well as the above mentioned strong

warping case. At any rate, for the weak warping (3.3) without the condition (3.6), the

physics should be almost the same as the case (i) as mentioned above. Then we would

realize the ISS-KKLT model and the ISS-racetrack model effectively, also in the case (ii).

The tree-level soft terms for visible fields in the case (ii) are derived as

Ma =
F T + 2k−1

a

(

ǫXf
(0)
a,X + ǫ−1

k f
(π)
a,X

)

F X̃

T + T̄ + 2k−1
a (f

(0)
a + f

(π)
a )

+ O(X̃),

m2
I =

βI c̃
2
I

1 − βIǫ2
I

(

ǫ2
I

1 − βIǫ2
I

|F T |2 − α̃I

3αIβI

ǫ2
X − β̃Iǫ

−2
k ǫ2

I

c̃I(c̃I − c̃X − k)
|F X̃ |2

)

+ O(X̃),

AIJK = −
{

(

βI c̃Iǫ
2
I

1 − βIǫ2
I

+ (I ↔ J) + (I ↔ K)

)

+
(c̃I + c̃J + c̃K)W

(π)
IJKǫIǫJǫK

W
(0)
IJK + W

(π)
IJKǫIǫJǫK

}

F T

+
W

(0)
IJK,XǫX + W

(π)
IJK,Xǫ−1

k ǫIǫJǫK

W
(0)
IJK + W

(π)
IJKǫIǫJǫK

F X̃ + O(X̃),

where we again omit the symbol |0. The difference from eq. (3.5) is just the position of ǫ−1
k

factors aside from the exchange of y = 0 and y = πR fixed points with each other.

If we consider the case satisfying eq. (3.6) (although above we have not showed the

corresponding vacuum in the hidden sector), the contribution from the direct coupling to

the gaugino mass Ma is enhanced by ǫ−1
k for f

(π)
a,X 6= 0, the scalar mass mI is of O(F X̃) or

larger, but the A-term can be suppressed if W
(0)
IJK 6= 0.

3.3 Patterns of soft terms

Here, let us summarize resultant patterns of soft SUSY breaking terms in our model. First

recall the sizes of F T , FX and FC , (3.4), that is, FX is larger than F T by a factor of

O(4π2) and the modulus mediation is comparable to the anomaly mediation. When f
(0)
a,X ,

f
(π)
a,Xe−(cX−3k/2)T = O(1), and e(cI−k/2)T or e−(cX−3k/2)T is not suppressed in eq. (3.1), the

F-term of X, FX , is dominant in all of soft terms, which are obtained as

Ma = O(m3/2), m2
I = O(m2

3/2), AIJK = O(m3/2),

that is, the visible sector is not sequestered from the dominant SUSY breaking source.

Their explicit ratios to m3/2 are model-dependent like generic spectrum due to the gravity

mediation.

When f
(0),(π)
a,X are sufficiently suppressed, the size of gaugino masses is estimated as

Ma = O(m3/2/(4π
2)). On the other hand, unless e(cI−k/2)T or e−(cX−3k/2)T is not sup-

pressed in eq. (3.1), the size of scalar masses is estimated as m2
I = O(m2

3/2). However,
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those are tachyonic in a natural parameter region like αI ∼ α̃I ∼ βI ∼ β̃I ∼ 1. Thus, the

contribution of FX to scalar masses must be sequestered except in a certain model like a

negative value of α̃I/αI and/or β̃I/βI . Note that when we suppress the contribution of FX

to scalar masses by requiring e(cI−k/2)T ≪ 1 as well as e−(cX−3k/2)T ≪ 1, the contribution

from F T is always suppressed.14 In this case, the modulus mediation contribution to the

gaugino masses is obtained as

Ma =
F T

T + T̄ + (2/ka)(f
(0)
a + f

(π)
a )

= O(m3/2/(4π
2)),

and the FX contributions to the scalar masses in the case (i), i.e. the UV uplifting (3.5),

are obtained as

m2
I = − c̃I α̃I

3αIβI

ǫ2
I − β̃Iǫ

−1
k ǫX

(c̃X − c̃I − k)
|FX |2.

When αI = α̃I = βI = β̃I = 1, this reduces to

m2
I = − c̃I

3

ǫ2
I − ǫ−2

k ǫ2
X

(c̃X − c̃I − k)
|FX |2.

This scalar mass must be suppressed as |m2
I | ≤ O(M2

a ) as the above reason. Otherwise,

scalar masses become tachyonic even at a low-energy scale when we include radiative cor-

rections due to gaugino masses. Then, the anomaly mediation is comparable, that is, the

mirage mediation, and magnitudes of soft masses are estimated as

Ma = O(m3/2/(4π
2)), m2

I = O(m2
3/2/(4π

2)2).

In order to avoid the SUSY flavor problem, the universal parameters, cI = cJ for I 6= J ,

are generically favored, as far as the modulus and the direct mediations are concerned.

However, if all the parameters cI are chosen so that ǫI ≪ 1/(4π2) (∀I) is satisfied, the

anomaly mediation is dominant in scalar masses and A-terms. In that case, nonuniversal

parameters, cI 6= cJ (I 6= J), would not cause problematic SUSY flavor violations.

4. Summary and discussions

We studied concretely moduli stabilization, SUSY breaking, F-term uplifting and seques-

tering, altogether in a simple supergravity model with a single extra dimension. These

issues are realized in a fully dynamical way by the use of wavefunction localization in extra

dimension, allowing explicit calculations. Contributions due to the uplifting sector make

soft scalar masses squared tachyonic and their absolute values are always larger than con-

tributions due to the modulus F-term. We found that the sequestering in the soft scalar

mass and the A-term can be achieved within the framework of F-term uplifting in our 5D

14This is because our model has only a single extra dimension. If we would extend our scenario to models

with more than one extra dimensions, we could obtain soft scalar masses, where the contribution from the

dominant SUSY breaking F X is sequestered but some moduli F-terms have significant contributions.
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model. Because the radius modulus is stabilized by a KKLT-type potential, the gaugino

mass is a mirage-type if the visible sector gauge kinetic function preserves the hidden sector

R-symmetry which is responsible for the dynamical SUSY breaking, and then the tree-level

modulus mediation is comparable to the anomaly mediation. It is notable that the TeV

scale mirage mediation [8] can solve the so-called little hierarchy problem [39] within the

MSSM, due to the gluino and wino mass unification at the TeV scale [40]. Note also that

our 5D model might have a corresponding conformal field theory (CFT) description15 due

to the AdS/CFT correspondence [41].

We have only considered typical cases (3.2) from the viewpoint of sequestering, i.e., all

the generations of quarks and leptons localize toward the common fixed point. However, as

mentioned in the introduction, it is known that a certain class of realistic Yukawa matrices

for quarks and leptons can be obtained by the wavefunction localization in 5D supergravity

theory. In this case, either the light generation or the heavy generation would be forced to

localize toward the same fixed points as the SUSY breaking field X. For such a generation,

sequestering can not occur, and the squark/slepton might receive a soft scalar mass with a

large magnitude from the direct coupling. We would study more detailed flavor structure

of our model with such realistic Yukawa couplings in a separate work [30]. (For the case

of radion domination or Scherk-Schwarz (SS) SUSY breaking [43],16 see refs. [20, 21] and

references therein.)

We also restricted to the case with a single modulus. If we consider more Z2-odd

vector multiplets in 5D, we have multiple moduli which can cause moduli mixing in the

gauge kinetic function, and then in the nonperturbative superpotential. Such mixing effects

could play important roles in the moduli stabilization [47, 14] after integrating out heavy

moduli [4, 48]. It is also important to study models with more than one extra dimensions

and it would be interesting to investigate whether the situation would change, e.g., whether

contributions due to the uplifting sector make soft scalar masses squared tachyonic or not,

and whether their absolute values are always larger than the modulus F-term contributions.

Our model is not directly related to a certain string model known until now. However,

the result of this paper would help us to understand some basic features of the moduli

stabilization, the SUSY breaking, the realization of Minkowski (de Sitter) vacuum and the

sequestering in higher-dimensional supergravity models and superstring models.
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in a different type of orbifold supergravity [45, 46].
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A. Basic structure of F-term uplifting

In this appendix, we review the scenario of F-term uplifting [10 – 12] based on the KKLT-

type SUSY AdS vacua.

A.1 KKLT model

First we briefly review the original KKLT model [3 – 5]. The F-term potential of the 4D

N=1 supergravity theory is given by

VF = KIJ̄F I F̄ J̄ − 3|m3/2|2,

where F I is the F-component of the I-th chiral multiplet and m3/2 is the gravitino mass

given respectively as F I = −eK/2KIJ̄(W̄J̄ − KJ̄W̄ ) and m3/2 = eK/2W .

Before introducing an uplifting sector, the KKLT model assumes the following Kähler

potential and superpotential,

K = −3 ln(T + T̄ ), W = c − Ae−aT , (A.1)

in the 4D effective supergravity theory, where T is a light modulus, the first constant term

in W , c, originates from a flux, the second T -dependent term comes from a nonperturbative

effect such as a gaugino condensation and then a = O(4π2), A = O(1). We measure all the

mass scales in the unit MP l = 1. In order to realize low scale SUSY breaking (TeV scale

gravitino mass), we consider a tiny flux constant,

ln c−1 = O(4π2). (A.2)

Then, the SUSY stationary condition of the scalar potential, F T = 0, is satisfied by

aT0 = ln(Ac−1) + ln(1 − aK−1
T |T=T0) ≃ ln(Ac−1) = O(4π2). (A.3)

This stationary solution corresponds to a SUSY AdS vacuum of the scalar potential with

a negative vacuum energy VSUSY = −3|m3/2|2
∣

∣

T=T0
= O(c2).

In the original KKLT model, this SUSY AdS minimum is uplifted to a Minkowski

minimum by introducing an anti D3-brane. The anti-brane breaks N = 1 SUSY explicitly

in the 4D effective supergravity, and generates an uplifting potential energy

U =

∫

d4θ |C|4ξθ2θ̄2 = ξe2K/3, (A.4)

where ξ is a constant. The total scalar potential is now given by V = VF + U and the

previous minimum is shifted as T = T0+δT . We tune the constant ξ = 3e−2K/3|m3/2|2
∣

∣

T=T0

so that V = 0 at the leading order in a δT/T0 expansion. Then, we find the shift of T at

this Minkowski minimum, δT/T0 ∼ 1/(aT0)
2 = O(1/(4π2)2), and the modulus mass,

mT ≃ aT0 m3/2 = O(4π2m3/2). (A.5)

The SUSY breaking order parameters are estimated as

F T

T + T̄
≃

m3/2

aT0
= O(m3/2/4π

2),
FC

C
≃ m3/2 = O(c). (A.6)
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Here we find that the tree level modulus mediation is comparable to the one-loop anomaly

mediation, F T ∼ FC/4π2, that is, the so-called mirage mediation [6].

If we consider a racetrack model,

W = Ce−cT − Ae−aT , (A.7)

instead of the KKLT superpotential (A.1), the modulus mass mT (F T ) is more enhanced

(suppressed) as

mT ≃ (aT0)(cT0)m3/2 = O((4π2)2m3/2), (A.8)

F T

T + T̄
≃

m3/2

(aT0)(cT0)
= O(m3/2/(4π

2)2). (A.9)

Thus the modulus mediation is negligible compared with the anomaly mediation in this

case.

A.2 ISS-KKLT model

In the original KKLT model, the uplifting potential (A.4) is a kind of an explicit SUSY

breaking term in the low energy effective theory. Instead, we can consider the case that

the uplifting potential is supplied by the F -term of a dynamical SUSY breaking sector X

which is included in the F-term potential VF itself. When X is somehow sequestered from

T , the picture that the AdS SUSY vacua existing in the T sector alone is uplifted by FX

generated by the X sector, would be valid. Then, we assume the following Kähler and

superpotential,

K = −3 ln(T + T̄ ) + ZXX̄(T, T̄ )|X|2, W = c − Ae−aT + µ2(T )X. (A.10)

The tadpole of X would appear as a low energy effective superpotential term in the dy-

namical SUSY breaking sector, such as the O’Raifeartaigh model [15] and the Intriligator-

Seiberg-Shih (ISS) model [16], after integrating out heavy modes, and we call the

model (A.10) the ISS-KKLT model. The effect of the heavy modes appears at low en-

ergy as a one-loop correction to the above Kähler potential,

∆K = −Λ−2Z(1)(T, T̄ )|X|4,

and then the correction to the scalar potential in this case is expressed as a SUSY breaking

mass term of X,

∆VF = m2
X |X|2 + O(|X|4), m2

X = eK(4µ4Z(1))/(ZXX̄Λ)2, (A.11)

where Λ is the mass scale of the heavy modes.17

If the T -X mixing is small,

|KTX̄ | ≪ KT T̄ , KXX̄ = O(1), |KTX | ≪ |KTT |, |WTX | ≪ |WTT |,(A.12)

17In Ref [12], the ZXX̄ (Z in the notation of ref. [12]) dependence of m2
X should be replaced by Z−2

XX̄
,

which is a typographical error.
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the solution

T0 ≃ a−1 ln(Ac−1), X0 ≃ 2(µ0/mX)2c̃, (A.13)

satisfying

WT + KT W = 0, VX = 0 (WX + KXW 6= 0), (A.14)

would be a good reference point of the SUSY breaking minimum, where Z0 = ZXX̄(T0, T̄0),

µ0 = µ(T0) and c̃ = c − Ae−aT0 . Here we have assumed

m2
X = O(µ2

0/(4π
2)), µ2

0 = O(c̃). (A.15)

We expand the potential around this point by substituting T = T0 + δT , X = X0 + δT

and find δT/T0 ∼ 1/(aT0)
2 = O(1/(4π2)2), δX/X0 ∼ 1/(aT0) = O(1/(4π2)). The vacuum

energy at this SUSY breaking minimum is vanishing, V = 0, if we tune the parameters as

c̃ ≃ µ2
0/
√

3Z0 + O(µ4
0), (A.16)

which is consistent with the above assumption µ2
0 = O(c). The leading moduli mass mT

and F T are the same as those in the original KKLT model, while we obtain

FX ≃
√

3/Z0 m3/2 = O(m3/2). (A.17)

In general, the Kähler mixing at the reference point (A.13) is suppressed KTX̄ ,KTX ∝
X0 = O(c) satisfying the first two conditions in eq. (A.12), in the ISS-type model where

the VEV of X can be significantly small. In such a case, we find general expressions [12],

mT ≃ −eK/2KT T̄ WTT

∣

∣

∣

T=T0,X=X0

,

F T ≃ −
√

3KT

KT T̄

(

√
3 +

√
KXX̄WTX

KT W

)

|m3/2|2
mT

∣

∣

∣

∣

∣

T=T0,X=X0

,

FX ≃ −
√

3

KXX̄

m3/2

∣

∣

∣

∣

∣

T=T0,X=X0

, FC ≃ Cm3/2

∣

∣

T=T0,X=X0
. (A.18)

This can be also adopted to the case with a sizable value of WTX under the assumption

that the reference point (A.13) is stable.

We can generalize the ISS-KKLT model to the case with, e.g., µ2(T ) = Be−bT where

the superpotential mixing WTX is sizable [12]. In this case, the perturbation around the

reference point (A.13) becomes unstable if the superpotential terms of the modulus sector is

KKLT-type. We can stabilize the reference point by considering a racetrack-type modulus

sector (A.7), i.e.,

W = Ce−cT − Ae−aT + Be−bT X, (A.19)

which we call the ISS-racetrack model. In this case, the deviations from the refer-

ence point (A.13), are estimated as δT/T0 ∼ bT0/(aT0 cT0)
2 = O(1/(4π2)3), δX/X0 ∼

– 19 –
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(bT0)
2/(aT0 cT0)

2 = O(1/(4π2)2). Because of the racetrack structure, the modulus mass is

enhanced as eq. (A.8), but unlike eq. (A.9), F T is estimated by eq. (A.18) as

F T

T + T̄
≃ b

(aT0)(cT0)
m3/2 = O(m3/2/4π

2),

due to the enhancement factor b from the T -X mixing, WTX (i.e., the second term in the

parenthesis of F T in eq. (A.18)). Thus the tree-level modulus mediation is comparable to

the anomaly mediation, in spite of a larger mass hierarchy between the modulus and the

gravitino mass (A.8).
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